From the Gartner Files:

Organizations Gartner has surveyed estimate that poor-quality data is costing them on average $14.2 million annually. We describe the key trends in this vital area for information leaders, chief data officers, information governance stakeholders and data stewards responsible for data quality.

Key Findings

• Data quality issues plague organizations of all sizes and in all vertical industries.

• The increased focus on information governance to reduce risk and increase business value is one of the factors causing more organizations to initiate data quality programs.

• Growth in the market for data quality technology is accelerating because these tools are increasingly recognized as critical infrastructure.

• Practices for data quality assurance are evolving to include more types of data and a broader range of business processes and stakeholders.

Recommendations

Information leaders, chief data officers (CDOs), information governance stakeholders and data stewards responsible for data quality should:

• Define data quality expectations for your key data, set the vision and choose a reasonable initial scope.

• Select the appropriate metrics, and measure and communicate the results.

• Build skills and establish data-quality-specific roles.
• Pick the right tools for the job; recognize areas of maturity and limitation.

Analysis

In a 2013 Gartner survey of the usage and adoption of data quality tools (see Note 1), respondents estimated that they were losing an average of $14.2 million annually because of issues with data quality.1 The Nexus of Forces of big data, cloud, mobility and social trends is exacerbating the problem. Over the past few years, awareness of data quality issues has been growing in all industries. IT leaders are beginning to recognize that data-related issues — such as poor-quality data — are hindering their ability to:

• Optimize the performance of workers and business processes

• Make better decisions

• Manage risk

• Cut costs

This increased awareness is reflected in the growing number of inquiries we’re receiving from clients about how to improve data quality. This report looks at the main trends in the market to help information leaders, CDOs, information governance stakeholders and data stewards responsible for data quality.

Overview of the Market for Data Quality Tools

Only a minority of organizations place the necessary importance on data quality in information-intensive initiatives. Such initiatives include business intelligence (BI) and analytics, data migration, master data management (MDM), big data and business-application-centric programs, including CRM and ERP. Organizations with more mature information management processes realize that high-quality data is vital for good decision making and assured business outcomes. They also understand that it can lead to process efficiencies, reduced risk and increased revenue. As a result, they are beginning to make data quality a major component of their information governance work. They are starting to use data quality tools to measure, monitor and track data quality issues, and to automatically correct flaws in data quality.

Recent surveys of IT leaders have revealed that they are starting to view data quality issues as key obstacles to gaining value from big data investments. This hasn’t yet led to any significant change in their buying behavior relating to data quality tools. The situation is different, however, for MDM. IT leaders already see data quality as essential for successful MDM, so their investment in these initiatives is increasing the uptake of data quality tools. In “Hype Cycle for Information Infrastructure, 2013,” we predict that data quality tools, in general, will reach mainstream adoption in less than two years. We rate their benefit as high — meaning that they enable organizations to increase revenue significantly.

In 2012, buyers showed significant interest in solutions offering both data quality and data integration functions. This was clear from inquiries derived from Gartner clients, RFPs and the market share growth for vendors with both capabilities. In 2013, many purchases of data integration tools also included data quality functions from the same vendor. More organizations now realize that they require both types of capability to support critical initiatives in BI/analytics, MDM and application modernization.

Providers with complementary technologies in both the data quality and data integration tool markets — and other related ones, such as MDM solutions — continue to enjoy the benefits of convergence, in the form of greater market mind share and traction. However, the degree to which they can seamlessly interoperate data quality and data integration capabilities will be what differentiates vendors. Another differentiator will be their ability to address new users outside IT who have fewer technical skills, such as data stewards and business analysts.

Most IT organizations still deploy data quality capabilities as packaged tools on-premises. Now the cloud will play a greater role in how data quality capabilities are delivered, with these functions increasingly being delivered as SaaS. Although the use of data quality SaaS is increasing, few SaaS offerings are yet to address all aspects of data quality.

Organizations still launch data quality initiatives that don’t have the support of an effective information governance framework designed to create business value from information assets. They should rethink their approach. They should:

• View information as a strategic asset

• Strengthen their competencies in governing and exploiting information

• Align information value to intended business outcomes

A minority of organizations are beginning to adopt the principles of Gartner’s Information Capabilities Framework (ICF) (see Note 2). The ICF is a model that describes the range of technology capabilities necessary to deliver an effective information infrastructure; and the way in which those capabilities are integrated and exposed to information use cases and application types. Those considering emerging architectures, such as the logical data warehouse, must also apply the principles supported by the ICF. The “describe” and “govern” common capabilities described in the ICF are where data quality functionality plays a crucial role — helping to assess the quality levels of key data assets, and then enforce rules to monitor for, and cleanse, data quality flaws.
More roles outside IT are becoming involved in, and will benefit from, data quality initiatives. For example, CDOs, data stewards, information governance teams, and other roles in the business are all participating. Therefore, the technology solutions offered are beginning to reflect this change.

This report looks at the trends we’ve identified in the data quality tools market, broken down into two types: practice trends and technology trends.

Practice Trends

Data Quality Initiatives Focus on More Data Types

The data types which data quality initiatives focus on continue to diversify. This reflects the ever-increasing variety of data in organizations — an aspect of the big data trend. In 2013, customer data remained the No. 1 focus of data quality initiatives, with 79% of data quality initiatives focusing on it, but its lead has dropped since 2012, when it stood at 87%. The figures for the other top five subjects of data quality initiatives — transactional (nonmaster) data, financial data, location data, and product data — all increased (see Figure 1).

Interest is growing in applying data quality tools and techniques to less structured data sources. The rise of social data represents a new area in which data quality tools need to be applied. Demand — reflected by inquiries from our clients — is low, but we expect significant growth.

Action item: Recognize that the variety of data in your organization will continue to increase, so your data quality initiatives must expand in scope. Prioritize your investments in data quality based on your business goals.

Support for Big Data Still Isn’t a Priority for Buyers of Data Quality Tools

The advent of big data has led to increasing calls for governance-related capabilities to deal with its challenges. Information leaders are becoming more aware that they can gain maximum advantage from their big data initiatives only if their data is of high quality. However, the implications of big data sources and technologies for the data quality discipline haven’t yet caused any substantial change in behavior.

We receive a limited volume of inquiries from clients about data quality in the context of big data. Buyers of data quality tools place little emphasis on support for big data issues. In a recent Gartner survey, support for big data issues ranked at only No. 16 in the list of factors that buyers consider when selecting a data quality technology and vendor (see Figure 2).1 Buyers placed more than twice as much importance on functional capabilities — the No. 1 factor they considered. Performance, scalability, and the vendor’s overall expertise in data quality came next. Buyers even ranked the fact that they already use other products from the vendor as a more important factor than support for big data when evaluating products and vendors.

We find it disquieting that buyers place so little emphasis on support for big data issues when selecting data quality tools and vendors; and we predict that, through 2016, 25% of organizations using consumer data will risk damage to their reputations because of their inadequate understanding of information trust issues.

Action item: Revisit your information governance strategies in light of big data issues. Give serious consideration to support for big data when selecting data quality tools and their vendors, because issues with data quality will prevent you from realizing the full potential of your big data investments.

Information Governance Drives Deployments of Data Quality Tools

Formalized information governance programs within end-user organizations are driving more deployments of data quality tools. Those planning to deploy data quality tools over the next 12 months cited information governance programs as their...
Among the other intended use cases are data/system migrations and consolidations, BI, analytics and MDM. This suggests that organizations are using data quality tools to enable innovation, increase operational efficiency, and reduce risk and cost. Use cases for data quality tools have become more diverse than those seen in previous years.

Action item: View data quality tools as an enabler of information governance initiatives, but also recognize that the tools can deliver value in a wide variety of use cases — including several of a more tactical nature.

Technology Trends

SaaS and Cloud-Based Deployments Increase

Until now, the typical IT department has tended to deliver data quality capabilities in the form of packaged data quality tools or custom-coded solutions in the organization's own computing infrastructure. Currently organizations are starting to opt for cloud-based deployments of data quality capabilities, usually in the form of SaaS, as an alternative to on-premises deployments or to supplement them.

In 2013, the percentage of SaaS deployments of data quality capabilities was 14%, up from 7% in 2012 (see Figure 4). Pay-per-use and deployment models with low or no upfront costs appeal to organizations as they represent an operational expense rather than a capital one.

Some data quality SaaS products are also becoming available as part of integration platform-as-a-service functionality. This means that buyers can acquire a more comprehensive range of data management services, while still benefiting from alternative delivery models.

Data quality SaaS solutions tend to focus on the quality of customer data for individual tasks such as postal address validation and cleansing, email address validation and telephone number validation, as well as other forms of data enrichment. They don't usually meet all the data quality needs of an organization, such as data profiling.

Those responsible for data quality are turning to SaaS to meet common data quality issues, often related to customer data. They are also seeking data quality capabilities such as SaaS in other data domains. Gradually, vendors are introducing SaaS offerings to address other forms of master data. For example, capabilities to ensure the compliance of product data with specific standards are now available as SaaS.

Vendors will increase the range of data quality capabilities available as SaaS as the uptake of SaaS models increases, cloud-based infrastructure matures and information risk management models also mature. Capabilities such as data profiling,
monitoring and generalized data cleansing will also be offered as SaaS.

Action item: Assess whether data quality solutions delivered in the cloud, particularly as SaaS, may advance or supplement your current approaches. As well as avoiding the cost and challenge of on-premises deployments, using data quality SaaS will reduce the cost of relying on specialized skills.

Increase in Data Profiling and Visualization of Data Quality Metrics

The adoption of data profiling functions and visualization of data quality metrics has increased. In 2013, 48% of data quality tool users used data profiling, up from 35% in 2012; and 35% used visualization of data quality metrics, up from 28% in 2012 (see Figure 5). This shows that organizations are measuring data quality more rigorously to achieve their information governance goals.

Standardization and general cleansing has taken over from matching as the No. 1 most commonly used functionality of data quality tools, used by 71% of users, with matching used by 70%. The use of data quality tools for real-time processing has jumped considerably, from 24% in 2012 to 43% in 2013. Both these developments reflect the increased use of data quality technology for in-line cleansing at the point of capture and maintenance of data within operational systems.

Action item: Start measuring now, recognizing that what you measure and the metrics you use will evolve over time. This is vital because measurement is the starting point and critical sustainability factor for data quality initiatives.
More Roles Participate in Improving Data Quality

IT has often driven and executed data quality projects but, in line with trends in information management, business roles such as that of the data steward will more often be responsible for managing the goals, rules, processes and metrics associated with improving data quality. CDOs, information governance teams and other roles in the business will also become more involved. Vendors’ technology solutions are beginning to reflect this change.

More organizations want to create structured processes for identifying, tracking and remediating data quality issues. They are seeking functions such as workflow, task management and issue tracking to deliver on these stewardship-oriented activities.

Action item: When assessing data quality offerings, consider not only the breadth of the capabilities in relation to your requirements, but also how easily non-IT workers will be able to understand, manage and exploit them.

Overlap and Convergence With Related Markets Continue

The data quality tool market continues to overlap and converge — at a vendor and product level — with the related markets for data integration tools and MDM solutions. The main reasons for the convergence of the markets for data quality and data integration tools are:

- Improving data quality often requires access to a variety of data source types and the data synchronization capabilities that data integration supports.
- All key use cases for data integration tools require a focus on data quality.

Although a growing number of vendors provide tools in both the data quality and data integration tool markets, only a minority deliver the capabilities in a deeply integrated way, both from a design-time and a runtime perspective. More organizations will adopt comprehensive solutions offering well-integrated data quality and data integration capabilities as they become available, but vendors will also continue to sell the two sets of capabilities separately.

Action item: When conducting data management initiatives that involve both data quality and data integration — such as BI/analytics, MDM, data migration and data consolidation — look for opportunities to use these capabilities synergistically. Treat these two types of capability as enhancing each other and as foundational elements of your information management infrastructure. This will help you achieve a more standardized and better governed environment for data delivery.

FIGURE 5
Functions Used by Users of Data Quality Tools, 2012 and 2013

- Standardization and general cleansing
- Matching
- Address standardization and validation
- Batch processing
- Parsing
- Data profiling
- Real-time processing
- Data quality issue resolution, workflow and tracking
- Data quality visualization
- Interaction with, or embedding in, DI tools
- Monitoring
- Location and/or spatial data enrichment
- Entity resolution
- Integration with, or embedding in, MDM solutions
- International support

% Organizations Deploying in 2012 (%)

% Organizations Deploying in 2013 (%)

DI = data integration; MDM = master data management

Source: Gartner (December 2013)
Evidence

1 In 2Q13, we surveyed 333 organizations in different regions and industries — and some in the public sector — about their data quality initiatives and deployments of data quality tools. These organizations were reference customers provided by the vendors in “Magic Quadrant for Data Quality Tools.” Our Web-based survey of the respondents’ experiences with vendors and tools captured data on elements including:

• Usage patterns
• Levels of satisfaction with major product functionality categories
• Nontechnology-related vendor attributes (such as pricing, product support and overall service delivery).

The rest of this evidence relates to the report as a whole. The analysis in this report is based on information from a variety of other sources, including:

• Extensive data on functional capabilities, customer-base demographics, financial status, pricing and other quantitative attributes gained via a RFI process engaging vendors in this market.
• Interactive briefings in which vendors provided Gartner with updates on their strategy, market positioning, recent key developments and product road map.
• Feedback about tools and vendors captured during conversations with users of Gartner’s client inquiry service in 2013.
• Market share and revenue growth estimates developed by Gartner’s technology and service provider research unit.

Note 1. Definition of Data Quality

The term “data quality” refers to the process and technology for identifying and correcting flaws in data that supports operational business processes and decision making. The packaged tools available include a range of critical functions for data quality initiatives, such as profiling, parsing, standardization, cleansing, matching, enrichment and monitoring.

Note 2. Gartner’s Information Capabilities Framework

Gartner’s ICF describes the set of information management technology capabilities needed to define, organize, integrate, share and govern an organization’s information assets in an application-independent manner to support its enterprise information management goals.

Gartner Research Note G00255625, Ted Friedman, Saul Judah, 11 December 2013
The expansion of data being created and consumed by businesses over the last two decades has been fuelled by advances in technology, and the desire to create an electronic record of every event in our personal and business lives. This data explosion has created an industry solely dedicated to the management of data and created a magnitude of jobs, from the emerging Data Scientists to the Chief Data Officer. However, like any other business asset, data is of little practical use and business value unless it is of a high enough quality that makes it fit for use.

This paper created by Experian Data Quality, featuring research from Gartner looks at the changing nature of data quality as a practice and the technology that has evolved with it. Highlighting the future trends within the market, Gartner explores four key findings throughout the research note:

1. Data quality issues plague organizations of all sizes and in all vertical industries.

2. The increased focus on information governance to reduce risk and increase business value is one of the factors causing more organizations to initiate data quality programs.

3. Growth in the market for data quality technology is accelerating because these tools are increasingly recognized as critical infrastructure.

4. Practices for data quality assurance are evolving to include more types of data and a broader range of business processes and stakeholders.¹

Organizations Gartner has surveyed estimate that poor-quality data is costing them an average $14.2 million annually. We describe the key trends in this vital area for information leaders, chief data officers, information governance stakeholders and data stewards responsible for data quality.² Throughout this paper, the changes in data quality technology are investigated and examples are provided to help you plan for the future.

Data quality initiatives focus on more data types

Businesses are capturing a variety of human and machine generated data, it is important that the data quality strategy keeps up with the changing nature of data. Gartner reports that “In 2013, customer data remained the No. 1 focus of data quality initiatives, with 79% of data quality initiatives focusing on it, but its lead has dropped since 2012, when it stood at 87%. The figures for the other top five subjects of data quality initiatives — transactional (nonmaster) data, financial data, location data and product data — all increased”.³

We believe this trend is expected to continue, especially with businesses appetite to create an electronic record of practically every event in their customer lifecycle. Businesses are now more aware than ever that quality of all types of data used by the business can impact key operational and strategic decisions. Incorrect product data can result in poor customer experience and have a negative impact to the brand. Wrong financial data can leave the business in an uncomfortable position with auditors. Irregularities in inventory data prevent the organisation from being able to plan the supply chain.

Changing trends

Data quality technology must be agnostic and yet inclusive to all types of data. Technology that limits itself to certain types of data domains will lose out; and technology that is too generic that cannot adapt to the uniqueness of certain types of data will also be left behind.

Take the car insurance industry for example, where the quality of customer, product, location, vehicle and the telematics data all are equally important. Data agnostic tools accept all types of data and measure the traditional data quality metrics such as completeness, uniqueness and patterns of data. However they typically may not always operate in domain niche areas; such as accuracy of vehicle data or international standards for postcode, telephone and mobile data which requires knowledge how counties or regions define rules and timely reference data. On the other hand technology that focusses on specific domains, like contact data quality, would not be able to measure the quality of product and telematics data produced by the cars, due to the different rules that govern them.

Examples of domain specific quality capabilities integrated within data quality technology include:

1. International data: Validation of ISO Country codes, dial codes, postcode, telephone and mobile data formats.

2. Financial data: Validation of credit card formats.

3. Central government: Validation of national ID formats such as UK National Insurance numbers or US Social Security Number.

4. Automotive: Integration of vehicle data, make, model, type and specification, using reference data.
Actions

The data quality market is answering need through a marriage between these two polar opposites in creating more rounded and holistic solutions. Businesses need to understand the variety of data used, and plan investments appropriately. The things to look out for are:

- Data agnostic tools that integrate with third-party domain validation technology.
- Ability to build your own data domain rules to future-proof your investment.
- Ability to scale up to new types of data, such as big data.

Information governance drives deployments of data quality tools

Successful governance programmes are often linked to understanding data and its underlying quality. Where governance programmes have failed, Experian Data Quality have noticed a heavy reliance on assessing processes and ownership, which can be very time-consuming but without empirical evidence, ultimately leading to abandoned initiatives.

The evidence of poor data processes is often uncovered through poor quality of the underlying information. Experian have seen inaccurate data reveal ineffective data processes, leading to business sponsored initiatives to change for the better. This has ranged improved training for staff, a change in how data is processed or an overhaul to systems.

Gartner reports “Those planning to deploy data quality tools over the next 12 months cited information governance programs as their most common intended use case, at 57%.” We believe data quality needs to be seen as an enabler of improving data and how it is managed.

Changing trends

Data quality tools will need to adapt to the requirements of information governance programmes, focussing on fundamentals such as collaboration, audit, and monitoring.

Governance teams are typically made up of different users from different business units, and successful communication between them is critical. Data quality tools need to embrace their use by different people and create an environment where information can be shared in an easy and efficient manner. Features that allow multiple roles and responsibilities; the ability to secure or share data when necessary and the ability to assign tasks and track them through to completion, will benefit the successful use of data quality within governance programmes.

Data quality technology should also be able to track changes made and ensure the lineage of data is maintained through quality changes. Governance programmes require tight control and audit of change to ensure that all actions can be traced back in case there are problems with specific actions.

Finally data quality technology should allow users to create rules that are specific to their governance initiative, enabling them to track the performance of these rules over time through monitoring.

For example, any business processing card payments is regulated by the Payment Card Industry Data Security Standards (PCI DSS), designed to protect stored cardholder data. Data quality technology can analyse data stores and identify instances of credit card formats hidden in unexpected areas. This will enable the governance teams to rapidly isolate and identify if the information stored breaches the standards.

The financial services industry has led the adoption of data quality along with information governance, more through necessity, avoiding fines from their regulators. Regulations such as BASEL and Solvency have created a market where governance and quality go hand in hand, and this trend is now being seen in other verticals such as utilities, telecommunications, and healthcare.

Actions

When considering data quality linked with a governance programme, businesses should look out for:

- Collaboration and communication capability, especially within the technology that analyses data. Features Experian have seen to be effective include the ability to share investigation results within the system, instant messaging, and the ability to assign data issues to colleagues.
- Audit trail and documentation maintained through versions of data as it changes, and standard documentation that tracks these changes to demonstrate lineage.
- Business rule development and monitoring over time, so that the success of data process improvement actions can be measured.
Increase in data profiling and visualisation of data metrics

The world of Business Intelligence (BI) and Analytics has changed with the emergence of visualisation tools that not only are appealing to look at; but also enable the user to drill down further into data in order to slice and dice the information. Business users do not need to wait for developers to generate insight; provided they get access to the data they can be self-sufficient. The same is being seen in the data quality market, where Gartner reports “The adoption of data profiling functions and visualization of data quality metrics has increased. In 2013, 48% of data quality tool users used data profiling, up from 35% in 2012; and 35% used visualization of data quality metrics, up from 28% in 2012.”

Profiling data quality allows the user to look for patterns in data, which often reveal issues the business would not have been aware of. When combined with visual reporting, problems that look like needles in a haystack can be easily detected and communicated to business stakeholders.

Using tangible business measures like, revenue or customer satisfaction to depict the impact of inaccurate data can make a compelling case to fix a data quality problem when the numbers seem to affect the bottom line.

For example, in figure 1, we have a visual representation of the quality of retail transactions by region. Here, by placing the total value of transactions without a store code in the middle of the sea can show business that they could be missing out on substantial portion of the revenue in their regional reporting. The business case to correct the missing store codes on the transaction data “lost at sea” is now stronger than ever. Visualisation can sell the business case for data quality to senior management, presenting quality issues in the same format as other business metrics are understood.

Changing trends

Data profiling technology would need to provide access to similar visualisation capabilities, either embedded within the product or integrated into visualisation software.

Providing visualisation capability packaged within data quality technology ensures the business user does not have to procure additional software. Alternately, having the ability to integrate data quality profiling tools allows the business to use their preferred visualisation software. Both options will cover all angles of requirements, and ensures that technology does not lag behind expectations of users.

Where profiling and technology are not packaged together, Experian have seen duplication of efforts by businesses. Whereby profiling technology has been used to find and analyse issues, and then create these rules within business intelligence software. There is further confusion in the market where pure visualisation and reporting tools are being used to measure data quality. These often lack quality profiling rules and can be cumbersome or only provide a partial picture.

Examples of integrated models include the ability for data visualisation tools to access the results from data profiling software, similarly to how technology integrates with data warehouses and databases.

Actions

Businesses need to look out for the following when investigating visualisation and profiling for their data quality programmes:

• Where there is a corporate visualisation solution, profiling technology should be able to easily integrate and share data.
• Profiling technology should have some level of visualisation built in to support more effective analysis of data quality.
• Built in visualisation should enable users to filter, segment and drill down into data, supporting train of thought analysis.

£12m
£15m
£12m
£15m
More roles participate in improving data quality

Experian have seen an increase in the number of customers with non-technical roles taking up an interest within data quality. This is a stark change from the beginning of the last decade, where data quality was limited to the domain of technical roles that usually sat within IT.

However, these roles are being taken up by regular users of data, who are often subject matter experts on how data should be used by the business. This is an indication of the influence of Governance as a factor that is changing data quality technology; where users in governance are expected to understand the data and its related processes within the organisation. These people are passionate about data; however use of technology can be a barrier.

Gartner state “CDOs, information governance teams and other roles in the business will also become more involved. Vendors' technology solutions are beginning to reflect this change.”

Changing trends

Data quality technology needs to adapt to a growing non-technical audience, and make it very easy for business users to analyse, measure and monitor data quality.

Fixing data quality issues may always find a home within IT, as it may require specialist technical skills depending on the nature of the problem and how it needs to be corrected. However, the process of detecting and analysing data quality and then monitoring the progress of quality, needs to be easy enough for business users to use. For example, Experian have data quality tools that provide visual drag-and-drop under interface when it comes to building data quality rules; translating it in the background to code that the technology can use. This improves early adoption, as the user does not have to learn additional skills to use the tools.

Subject matter experts using data quality technology, may also be able to advise how fixes should be applied and warn if a fix can have negative repercussions. Technology can help by providing the ability to prototype data and develop ‘what-if’ scenarios that business users can try and advise of the best possible fix.

An example of data prototyping is using technology to try the fix before you implement it, comparing the data before and after, as well as assessing the impact on other data. Prototyping can help business users understand and vet any fix being applied to data.

Actions

Businesses need to look out for the following when acquiring data quality technology:

• The technology should be easy to install and use, requiring a short learning curve.

• The technology does not require special skills that are not readily available.

• The technology should promote ‘what-if’ scenarios; ensuring users can try potential solutions and assess the impact before they deploy it into the enterprise.

Source: Experian

Experian Data Quality has built up exceptional market coverage assisting customers with their unique data quality challenges.

We provide a comprehensive toolkit for data quality projects combining our market leading software with a vast scope of reference data assets and services. Our mission is to put our customers in a position to make the right decisions from accurate and reliable data. The size and scope of data management projects varies considerably but the common factor in all ventures is unlocking operational efficiency and improving customer engagement. We see the potential of data. Whether it’s in enabling ambulances to be sent to the exact location of an emergency or attributing charitable donations to the people who need it the most - data accuracy makes all the difference to service provision.

About the Author - Janani Dumbleton
Principal Consultant
Experian Data Quality

Janani joined Experian Data Quality in 2011 as a senior consultant, with a focus on management consultancy specialising in data quality, governance and strategy. Janani currently manages the development of data quality value propositions and the delivery of thought leadership through events, webinars, whitepapers and blogs.

Prior to Experian, Janani held roles as a business and technology consultant over thirteen years delivering high-value and challenging business projects, with a focus on data modelling, data quality, business process improvement, enterprise architecture, business intelligence and multi-channel customer relationship management. She has experience working with variety of industry verticals in the UK and USA, covering high-tech, retail, telecommunications, manufacturing, travel and transportation, leisure, business services, local government, business support, education, and financial services.